Computer Science Algorithms and Interactive Media
Algorithm Analysis and Visual Computing
Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
Big O Notation
Lorem ipsum dolor sit amet, consectetur adipiscing elit. The time complexity of binary search is:
While the space complexity of merge sort can be expressed as:
Graph Theory
Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam. The adjacency matrix representation:
The adjacency matrix is defined as: if there is an edge from vertex to vertex , and otherwise.
Nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur.

Dynamic Programming
Vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? The Fibonacci sequence can be computed efficiently using dynamic programming:
The Fibonacci sequence is defined recursively as:
- for
// Dynamic programming solution for Fibonacci sequence
use std::collections::HashMap;
struct FibonacciCalculator {
memo: HashMap<u64, u64>,
}
impl FibonacciCalculator {
fn new() -> Self {
let mut memo = HashMap::new();
memo.insert(0, 0);
memo.insert(1, 1);
Self { memo }
}
fn fibonacci(&mut self, n: u64) -> u64 {
if let Some(&result) = self.memo.get(&n) {
return result;
}
let result = self.fibonacci(n - 1) + self.fibonacci(n - 2);
self.memo.insert(n, result);
result
}
fn fibonacci_sequence(&mut self, count: usize) -> Vec<u64> {
(0..count as u64).map(|i| self.fibonacci(i)).collect()
}
}
fn main() {
let mut calc = FibonacciCalculator::new();
let sequence = calc.fibonacci_sequence(20);
println!("First 20 Fibonacci numbers:");
for (i, &fib) in sequence.iter().enumerate() {
println!("F({}) = {}", i, fib);
}
// Time complexity analysis
let start = std::time::Instant::now();
let large_fib = calc.fibonacci(100);
let duration = start.elapsed();
println!("\nF(100) = {} (computed in {:?})", large_fib, duration);
}Machine Learning
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti. The gradient descent update rule:
Where is the learning rate and is the cost function.
Computational Complexity
Atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident. The P vs NP problem remains one of the most important open questions in computer science.

Similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Sorting Algorithms
Et harum quidem rerum facilis est et expedita distinctio. The average case time complexity of quicksort:
However, the worst case is:
// Quicksort implementation with complexity analysis
package main
import (
"fmt"
"math/rand"
"time"
)
type SortAnalyzer struct {
comparisons int64
swaps int64
}
func (sa *SortAnalyzer) quickSort(arr []int, low, high int) {
if low < high {
pi := sa.partition(arr, low, high)
sa.quickSort(arr, low, pi-1)
sa.quickSort(arr, pi+1, high)
}
}
func (sa *SortAnalyzer) partition(arr []int, low, high int) int {
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
sa.comparisons++
if arr[j] < pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
sa.swaps++
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
sa.swaps++
return i + 1
}
func generateRandomArray(size int) []int {
arr := make([]int, size)
rand.Seed(time.Now().UnixNano())
for i := 0; i < size; i++ {
arr[i] = rand.Intn(1000)
}
return arr
}
func analyzeComplexity(size int) {
arr := generateRandomArray(size)
analyzer := &SortAnalyzer{}
start := time.Now()
analyzer.quickSort(arr, 0, len(arr)-1)
duration := time.Since(start)
fmt.Printf("Array size: %d\n", size)
fmt.Printf("Time: %v\n", duration)
fmt.Printf("Comparisons: %d\n", analyzer.comparisons)
fmt.Printf("Swaps: %d\n", analyzer.swaps)
fmt.Printf("Theoretical O(n log n): %.2f\n", float64(size)*math.Log2(float64(size)))
fmt.Println("---")
}
func main() {
sizes := []int{100, 1000, 10000, 100000}
fmt.Println("Quicksort Complexity Analysis:")
for _, size := range sizes {
analyzeComplexity(size)
}
}Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est.
Machine Learning Implementation
Here's a simple neural network implementation for gradient descent:
import numpy as np
import matplotlib.pyplot as plt
class SimpleNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.01):
# Initialize weights with small random values
self.W1 = np.random.randn(input_size, hidden_size) * 0.1
self.b1 = np.zeros((1, hidden_size))
self.W2 = np.random.randn(hidden_size, output_size) * 0.1
self.b2 = np.zeros((1, output_size))
self.learning_rate = learning_rate
self.loss_history = []
def sigmoid(self, x):
return 1 / (1 + np.exp(-np.clip(x, -500, 500)))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, X):
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = self.sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
self.a2 = self.sigmoid(self.z2)
return self.a2
def backward(self, X, y, output):
m = X.shape[0]
# Calculate gradients
dZ2 = output - y
dW2 = (1/m) * np.dot(self.a1.T, dZ2)
db2 = (1/m) * np.sum(dZ2, axis=0, keepdims=True)
dA1 = np.dot(dZ2, self.W2.T)
dZ1 = dA1 * self.sigmoid_derivative(self.a1)
dW1 = (1/m) * np.dot(X.T, dZ1)
db1 = (1/m) * np.sum(dZ1, axis=0, keepdims=True)
# Update parameters
self.W2 -= self.learning_rate * dW2
self.b2 -= self.learning_rate * db2
self.W1 -= self.learning_rate * dW1
self.b1 -= self.learning_rate * db1
def train(self, X, y, epochs=1000):
for epoch in range(epochs):
# Forward propagation
output = self.forward(X)
# Calculate loss
loss = np.mean((output - y) ** 2)
self.loss_history.append(loss)
# Backward propagation
self.backward(X, y, output)
if epoch % 100 == 0:
print(f'Epoch {epoch}, Loss: {loss:.6f}')
def predict(self, X):
return self.forward(X)
# Example usage: XOR problem
if __name__ == "__main__":
# XOR dataset
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
# Create and train network
nn = SimpleNeuralNetwork(2, 4, 1, learning_rate=0.1)
nn.train(X, y, epochs=5000)
# Test predictions
predictions = nn.predict(X)
print("\nPredictions:")
for i, pred in enumerate(predictions):
print(f"Input: {X[i]}, Target: {y[i][0]}, Prediction: {pred[0]:.4f}")